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1 Abstract

Power, the probability of detecting an effect when a true effect exists, is an important but under-considered

concept in empirical research. Power analysis, i.e., selecting the number of observations to obtain a given

power, is a useful process to avoid issues of low power in experimental research. However, it is often not clear

ex-ante what the required parameters for a power analysis, like the effect size and standard deviation, should

be. Previous studies, the best guess for these parameters, are likely inaccurate for the novel environments

researchers seek to investigate. This paper proposes the use of Quantal Choice/Response (QR) simulations

for ex-ante power analysis, as it can map related data-sets into predictions for novel environments. As the

QR is a frequently used and successful model of choice behavior, it should improve the accuracy of an ex-

ante power analysis. The QR can also guide optimal design decisions, both ex-ante as well as ex-post for

conceptual replication studies. This paper demonstrates QR simulations on a wide variety of applications,

and finds it is a useful tool for power analysis and experimental design.

2 Introduction

Statistical power, the likelihood of detecting an effect when a true effect exists, is an important consideration

in any empirical research, both inside and outside of economics. Low power is problematic by definition, but

even when an effect is detected in a low powered study, the finding is either likely to be false (Ioannidis, 2005),

or the estimated effect size can be exaggerated or in the wrong direction (Gelman and Carlin, 2014). These
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issues contribute to the replication or credibility ‘crisis’ that affects a wide range of scientific disciplines. It

also can lead to research efforts being misplaced, with theories or extensions being proposed on effects that do

not actually exist. Power is frequently ignored in economics, although that is becoming less true over time.1

As a result, low power is pervasive in empirical economics research, which is clearly a situation that needs to

be addressed.2 Unlike other empirical fields, experimental research (such as lab or field experiments) has more

control over the power of a study. In particular, the number of observations in a study is a decision variable

of the researcher, where increasing observations increases power. Despite this, economics experiments have

also historically neglected the consideration of statistical power, and thus also have exhibited low power.3

Power analysis is the process of determining an appropriate sample size for an experiment. As a result of

previous low power in the field, power analysis is rightfully becoming increasingly important in experimental

economics. How a power analysis is often conducted is that estimates of the treatment effect size and standard

deviations are obtained from previous studies, or inferred from introspection or beliefs. These parameters

are then used in a closed-form representation of power (typically from a two-sample t-test) or a statistical

software package, which gives the required sample size. The question is, where should these parameters

come from? The treatment effect size could be specified from the point predictions of the model in question.

However, economic theory is typically more successful in predicting comparative statics than point estimates.

In addition, economic theory is typically silent on the expected standard deviation, so it cannot provide

guidance on that parameter.4 A more suitable approach is to use past experimental data as a starting point

for these parameters. However, sufficiently close or exhaustive experimental environments may not exist.

Even with appropriate data, a novel experiment will differ from past experiments in meaningful ways. For

example, a new treatment might be conducted, or different parts of a theory’s parameter space might be

explored. It is not clear ex-ante what the actual treatment effect size would be, or how much variability

subjects would exhibit, in these new treatments.

This paper explores a potential alternative method of power analysis based on a Quantal Choice/Re-

sponse framework (henceforth QR) of individual behavior over discrete options (McFadden, 1976). The

QR, also known as a logistic regression, has been successfully applied to many fields and applications, such

as computer science, biometrics, transportation, psychology, and other social sciences, to help explain or

model choice behavior. The QR framework is not limited to single decision-maker problems, as the Quantal

1Ziliak and McCloskey (2004) report that only 4% of the papers published in the American Economic Review in the 1980s
mention power, increasing to 8% in the 1990s.

2Ioannidis et al. (2017) report a median power of 18% over a wide variety of empirical economics fields.
3Zhang and Ortmann (2013) report 1 out of 95 papers in Experimental Economics from 2010-2012 mention statistical power,

as well as a median power of 25% in experimental studies of the Dictator Game. For reference, a power of 80% is generally
considered sufficient in experimental economics (Moffatt (2016, pg. 22); List et al. (2011, pg. 448)).

4Notable exceptions exist, such as price dispersion (Burdett and Judd, 1983) where predictions of variability have been
experimentally tested (Cason et al., forthcoming).
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Response Equilibria (henceforth QRE) extends it to multiple interacting decision-makers (McKelvey and

Palfrey, 1995). The QRE has proven successful in explaining subject behavior in strategic settings and is

widely used in experimental economics and political science. The QR framework assumes a noise structure

in which individuals choose actions in proportion to their relative payoffs, such that better actions are chosen

more frequently. Relative payoffs can be presented graphically as a ‘payoff hill’, which I describe further in

Section 3, and these hills intuitively capture subject behavior through the incentives that they face. The

method of power analysis that I propose fits a structural QR framework to the most closely related previous

experimental data-sets. Given the parameters from that model, the QR framework provides predictions for

the probability that each possible action would be taken in the proposed new experiment. In other words,

the QR approach takes what is known about subject behavior in previous studies, and maps that onto likely

subject behavior in the new experiment that is yet to be conducted. From the predicted probabilities, simu-

lated data-sets can be generated, and it is on these data-sets that power analysis is then conducted. As QR

has proven successful in modeling choice behavior, with appropriate parameters inferred from past data the

simulated data-sets should be a reasonable approximation of likely subject behavior. The more accurate the

approximation of actual subject behavior is, the more accurate the ex-ante power analysis will be, meaning

the study should be reasonably powered ex-post.

This paper describes and exhibits the QR based simulation approach to power analysis. In Section 3 I

describe the payoff hills which effectively underlie QR, and arguably contribute to its success. Payoff hills can

help explain where empirical treatment effect sizes are likely to differ from theoretical point predictions, and

what treatments are likely to exhibit high subject variation, both of which are important considerations for

power analysis. In Section 4, I outline the QR simulation approach in more detail, and describe how it could

be used to help design experiments. In particular, experiments are typically designed such that theoretical

predictions are distantly spaced, i.e. the treatment effect size from point predictions is maximized. However,

if theoretical predictions differ substantially from subject behavior, it should be that the likely empirical

average behavior is distantly spaced instead. The QR framework provides estimates for likely behavior for a

variety of possible design decisions. Design decisions with respect to power also need to consider the impact

on likely subject variability. The QR framework also provides an estimate of likely subject variability for

many possible design decisions. I confirm the importance of considering the treatment effect and standard

deviations simultaneously using closed-form expressions of power, as it is not always optimal to maximize

the treatment effect size. In Section 5, I demonstrate the application of the QR approach using a motivating

example of an experiment in Bayesian Persuasion, and compare it to a more standard approach to power

analysis. The Bayesian Persuasion environment is a non-abstract example where maximizing the theoretical

treatment effect size is very poor for power. Finally, in Section 6 I apply the QR simulation approach
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to various high-profile papers. I conduct a thought exercise where I place myself in a similar situation as

the original authors, that is, I largely ignore the data in the paper and rely on other sources to conduct

the analysis. I find that the QR approach can be applied to a wide range of environments, sometimes

with creative modifications to incorporate the operative channel of the treatment effect. However, there

are exceptions, namely experiments where no explicit theory is provided that could explain a treatment

difference. The ex-ante power analysis from the QR simulations compares favorably to an ex-post power

analysis, with the caveat that ex-post analysis is an excessively high standard for ex-ante analysis to meet.

I also suggest alternative parameters and treatments to increase power for each paper, which decreases the

required number of subjects. Optimally selecting design parameters in such a way could also be conducted

ex-post to guide a conceptual replication that is ‘efficient’, in that it minimizes subject costs.

3 Payoff Hills and Power Analysis

3.1 Payoff Hills

A payoff hill is a graphical representation of the level of payoffs arising from different actions, so-called as

the optimum action is the ‘peak’ of the hill, while the decreases in payoffs from deviating away from the

optimum form the ‘sides’ of the hill. As QR agents exhibit noisy behavior in proportion to their relative

payoffs, the QR effectively incorporates the payoff hill, making it a useful visual aid to help explain why QR is

successful in explaining choice behavior. Payoff hills are an important design factor that most experimenters

are aware of, as they reflect the incentives subjects face to behave optimally. Much attention was brought

to this topic by Harrison (1989), who proposes a metric of foregone expected income, which is the inverse of

what I describe as a payoff hill. In what is now known as the ‘flat-maximum critique’, Harrison notes that in

an experimental implementation of a first-price sealed bid auction (Cox et al., 1988), large deviations from

the optimal action result in only in small decreases in expected payoffs. Therefore, reading too much into

such deviations could be problematic. Following this logic, payoff hills that are ‘flatter’ are likely to exhibit

more noisy behavior, because subjects suffer smaller payoff consequences for deviations from the optimal

action. The flatness or steepness of a payoff hill can therefore influence the standard deviation, and thus

have an impact on power analysis. The Harrison (1989) paper sparked a flurry of discussion, with multiple

comments on the article published (e.g. Cox et al. (1992), Kagel and Roth (1992), Merlo and Schotter (1992),

and Harrison (1992)). Of particular note, Friedman (1992) points out that the flat-maximum critique would

predict deviations in both directions if the flatness was symmetrical about the optimal action. In order to

predict consistent deviations in one direction (i.e. above or below the optimal action), it would need to be
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the case that the payoff hill is asymmetric with one side of the hill being flatter than the other. Subjects will

be more likely to make deviations in the direction where they face smaller payoff consequences for doing so.

Such directional errors can influence the treatment effect size, especially when the asymmetry of the payoff

hill differs by treatment, and thus can affect power analysis. The following section investigates the impact of

both the steepness/flatness and asymmetry of the payoff hill on the likely treatment effect size and standard

deviations.

3.2 Effects of Payoff Hills on Power Analysis

Power analysis is largely driven by three parameters: the treatment effect size τ ; the standard deviation of

the first treatment σ1; and the standard deviation of the second treatment σ2. Due to its impact on likely

subject behavior, payoff hills can thus affect all three of these parameters, which is now demonstrated with

a constructed example.

For this example, subjects make their decision x over an action space of x ∈ [0, 10]. To consider asymmetry,

I define the payoff hill over x to be a piece-wise Gaussian function about some maximal payoff a = 1 which

occurs at point b, while allowing for the possibility for the variable c to be different on either side of the

maximum point. The variable c represents the steepness of the payoff hill, as it determines the slope of the

function when moving away from the optimal point, with lower values of c being steeper.5 More explicitly,

the payoff hill is:

π(x; a, b, cLHS , cRHS) =


a exp(− (x−b)2

2c2LHS
), if x < b

a exp(− (x−b)2
2c2RHS

), otherwise

Suppose there are two treatments, where the payoff maximizing action is b1 = 4 in Treatment 1, and b2 = 6

in Treatment 2. An initial estimate of the treatment effect size can be derived from the point predictions of

standard theory, τ = b2 − b1 = 6− 4 = 2. However, this estimate is likely erroneous, as it is ignorant to the

shape of the payoff hill. I consider four potential types of treatment payoff hills, a symmetrical payoff hill where

cLHS = cRHS for both treatments, and three different combinations of asymmetric payoff hills. The first type

of asymmetric hill has the flatter side of the hill to the same side of the optimum value in both treatments,

with c1,LHS = c2,LHS < c1,RHS = c2,RHS . The second type of asymmetric hill has the flatter side of the

payoff hills facing away each other, with c1,RHS = c2,LHS < c1,LHS = c2,RHS . The third type of asymmetric

hill has the flatter sides facing towards each other, with c1,LHS = c2,RHS < c1,RHS = c2,LHS . These four

types of payoff hills can be considered in conjunction with their relative steepness as encapsulated by c.

5The variable c is analogous to the standard deviation in the normal distribution, where lower standard deviations imply
mass is distributed more ‘tightly’ about the mean.
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(a) Symmetrical (b) Asymmetrical: Same

(c) Asymmetrical: Away (d) Asymmetrical: Towards

Figure 1: Payoff hills with different types of asymmetries.

Diagrams of these four combinations of payoff hills for a ‘baseline’ hill with csteep = 1.5 and cshallow = 2.5,

and a ‘steeper’ hill with csteep = 1.0 and cshallow = 2.0 are shown in Figure 1. Similar payoff hills can occur

in more natural experiments, but for the purposes of this exercise I assume such payoff hills are constructed

exactly in a single decision maker environment.6

I now analyze the impact that asymmetry of the payoff hills has on the likely treatment effect size. As

mentioned previously, an immediate initial estimate of the treatment effect size would be τ = 2, from the

point predictions of theory. However, asymmetries in the hills will impact the likely empirical treatment effect

size that is observed. This is most evident from the payoff hills displayed in Figures 1c and 1d. Subjects in

Figure 1c are more likely to deviate from optimal behavior towards the edges of the action space, increasing

the treatment effect size. Whereas those in Figure 1d will be deviating towards the center of the action

space, decreasing the treatment effect size. In the limit, this distortion from the point prediction τ would

diminish as both cRHS → 0 and cLHS → 0, or as λ → ∞. Therefore, it is not only asymmetry that effects

the treatment effect size, the steepness of the payoff hill also matters. Ignoring either of these payoff hill

features can result in erroneous conclusions about power through incorrect estimates of the treatment effect

size. The steepness of the payoff hill more directly impacts the standard deviation rather than the effect size,

and the standard deviation is also a determinant of power. Therefore, when considering the impact of the

6It is typically the case that the experimenter does not have this level of precise control over the payoff hill, however, it is
also the case that it is rare that the experimenter has no control at all over the payoff hill.
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payoff hill on power, these two parameters need to be considered in tandem.

In order to calculate power for the different combinations of asymmetry and steepness, τ , σ1, and σ2 need

to be specified, which is where the QR framework comes in handy. I apply the QR framework to map the

payoff hills into a probability of choosing a particular action using the logit choice rule p(ai) = eλEπai∑
aj∈A

e
λEπaj

with an arbitrarily selected λ = 1.7 Table 1 reports the output of a simulation based power analysis for

various combinations of csteep and cshallow. Asymmetric payoff hills do affect the treatment effect size in the

manner previously suggested, in that it is suppressed when the shallow sides face towards each other and

typically amplified when the shallow sides face away. Increasing the steepness of the payoff hill (decreasing

c) unambiguously decreases the standard deviation. There is also an interaction with the boundaries of the

action space, as evidenced by the ‘Same’ column in Table 1 where the treatment effect size is suppressed,

which could be lessened if the action space were extended or eliminated if the boundary were removed.8 This

interaction is potentially important as experiments typically have bounded action spaces. Finally, flatter

payoff hills overall, as demonstrated in the last row of Table 1, suppress the treatment effect. This is due to

subjects getting closer to indifference over all actions, which in the QR framework entails uniform random

play, and thus no treatment effect. All of these potential factors arising from the structure of the payoff hills

should be considered when evaluating power.

4 QR Simulations for Optimal Experimental Design

4.1 Describing the QR Simulation Power Analysis

A simulation approach specifies a data-generating process (DGP), which can then used to generate many

simulated data-sets upon which power analysis can be conducted. The QR is an appropriate choice for a

DGP of subject behavior, as it has been successful in predicting a wide range of experimental environments,

and thus is likely to resemble the true DGP. The specific DGP used in a QR simulation is the logit function:

p(ai) = eλEUai∑
aj∈A

e
λEUaj

, where EUai is the expected utility or payoff of choosing action i, and λ is a decision

precision or noise parameter. The expected utility of each action, EUai , will depend on the environment

in question, and will be a function of the parameters in the experimental design (e.g. monetary payoffs,

treatments) as well as any other utility relevant parameters (e.g. risk aversion, other-regarding preferences).

In a single decision-maker problem, it is relatively straightforward to calculate EUai for each action. In a

strategic setting, calculating EUai is more involved as it now additionally depends on other player’s actions.

The other player’s actions are also probabilistic in a similar manner, i.e. by the logit choice function based

7I discretized the action space as 10000 evenly spaced points from 0 to 10 inclusive, and binned adjacent actions depending
on their impact on payoffs.

8The bounded action space also explains the small deviations from τ = 2 in the Symmetrical case.
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Parameters Symmetrical Asymmetrical: Same Asymmetrical: Away Asymmetrical: Towards

csteep = 1.5
cshallow = 2.5

τ = 1.944
σ1 = 1.804
σ2 = 1.806

Power= 64.6%

τ = 1.604
σ1 = 2.329
σ2 = 2.072

Power= 28.0%

τ = 2.147
σ1 = 2.069
σ2 = 2.072

Power= 60.4%

τ = 1.058
σ1 = 2.329
σ2 = 2.333

Power= 9.1%

csteep = 1.0
cshallow = 2.5

τ = 1.997
σ1 = 1.221
σ2 = 1.223

Power= 97.1%

τ = 1.657
σ1 = 2.068
σ2 = 1.771

Power= 41.3%

τ = 2.735
σ1 = 1.769
σ2 = 1.771

Power= 95.1%

τ = 0.575
σ1 = 2.068
σ2 = 2.072

Power= 3.5%

csteep = 1.5
cshallow = 2.0

τ = 1.944
σ1 = 1.804
σ2 = 1.806

Power= 64.6%

τ = 1.796
σ1 = 2.095
σ2 = 1.974

Power= 43.7%

τ = 2.150
σ1 = 1.971
σ2 = 1.974

Power= 65.9%

τ = 1.441
σ1 = 2.095
σ2 = 2.098

Power= 24.4%

csteep = 1.0
cshallow = 2.0

τ = 1.997
σ1 = 1.221
σ2 = 1.223

Power= 97.1%

τ = 1.835
σ1 = 1.831
σ2 = 1.675

Power= 61.4%

τ = 2.707
σ1 = 1.673
σ2 = 1.675

Power= 96.8%

τ = 0.961
σ1 = 1.831
σ2 = 1.834

Power= 12.7%

csteep = 2.0
cshallow = 3.0

τ = 1.629
σ1 = 2.262
σ2 = 2.265

Power= 27.3%

τ = 1.215
σ1 = 2.655
σ2 = 2.404

Power= 10.3%

τ = 1.385
σ1 = 2.401
σ2 = 2.404

Power= 15.9%

τ = 1.042
σ1 = 2.655
σ2 = 2.660

Power= 6.7%

Table 1: Effects of Payoff Hill Asymmetry and Steepness on Power
Power is evaluated using a t-test at the α = 0.01 level with N = 15 observations per treatment.

on their expected payoffs. In the strategic case the QRE must be computed, which is a fixed point where

each player’s logit choice rule is a best response to all other player’s logit choice rules.

For the QR approach, the main parameter the researcher has to specify is λ, a decision precision parameter

that represents how frequently subjects play ‘better’ actions. Reasonable estimates of λ should be obtained

by structurally fitting a QR model of the logit function to data from the most closely related previous

studies. Additional parameters may need to be specified if the theory requires them (e.g. a hypothesis

about reciprocity may require an estimate of other-regarding preferences). These parameters should also

be calibrated from previous experiments in the same manner as λ.9 In the event that no suitable data is

available, a small pilot could be conducted and the parameters estimated from that, or other parameters

that are considered acceptable by the literature could be used. The parameters inferred from the previous

data are then substituted into the QR logit choice rule for the new experimental environment in question.

To finalize the DGP, the statistical test that will be used in the experiment needs to be considered. For

example, if the final statistical test will cluster its standard errors, then the DGP should have something in

it to justify the need for clustering, otherwise the power analysis may be misleading. There are various ways

this could be implemented, for example, an individual or session level λ or other parameter could be drawn.

This finalizes the specification of the DGP, from which simulated data-sets can be generated. Power is then

9The calibration will likely be imperfect considering that it was probably not the original study’s intention to structurally fit
such parameters. Instead, the aim is to obtain reasonable estimates and improve upon subjective guesses of parameters ex-ante.
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calculated by performing the desired statistical test on each simulated data-set, and counting the number

of times the null hypothesis is rejected. A simulation approach is particularly helpful for more complicated

statistical tests that do not have closed-form expressions for their power.

4.2 Optimal Experimental Design

There are many considerations that go into an experimental design, which include the number and levels of

treatments, whether to vary treatments between- or within-subjects, whether to use the strategy method,

have fixed groups or random re-matching, what payoffs should occur from outcomes, and so forth and so on.

In the strictest possible sense, power analysis determines only one design decision, the number of subjects to

have in each treatment, when other design decisions are held fixed. However, any design decision could be

evaluated and selected on the basis of power. Optimal experimental design refers to making design decisions

with respect to maximizing some metric. I focus on the metric of power, and the design decisions of selecting

treatment levels and environmental parameters that are fixed by treatment (e.g. payoffs, probabilities, etc.).10

Traditionally, these parameters would be chosen to increase the difference in theoretical predictions, which

usually requires exploring the furthest reaches of the parameter space.11 This rule of thumb is often successful

for two reasons. Firstly, if the effect size is linear in the treatment level, by ‘D-optimal design’ (Moffatt, 2016,

ch. 14) it is always optimal to space the treatment levels as far apart as feasibly possible.12 Secondly,

maximizing the theoretical treatment effect size usually maximizes the actual treatment effect size, which

is beneficial for power. However, on the first point, it is not always D-optimal to maximize the difference

in treatment levels if the relationship is non-linear, which is effectively the case if the standard deviations

depend on the treatment level.13 On the second point, Section 3 already established that asymmetric payoff

hills can result in different theoretical and actual effect sizes, so it is not immediately clear that maximizing

one maximizes the other. However, even if it does, the impact that the treatment level or any other parameter

has on the standard deviation needs to be taken into account. It could be the case that the standard deviation

increases substantially, meaning a given parameter change might not increase power despite increasing the

effect size. The rule of thumb proves reasonably successful in a lot of environments, otherwise it would not

be accepted as such. However, QR simulations can help identify the environments where the described issues

with the rule of thumb could be present.

10It should be noted that the strategy method unambiguously increases power over direct response, and doing treatments
within-subject is very beneficial for power if there is substantial individual heterogeneity.

11For example, from classic textbooks on experimental design: “A related aspect of calibration is the use of a design in which
the predictions of alternative theories are cleanly separated.” (Davis and Holt, 1993, pg. 28), “Use widely separated levels to
sharpen the contrasts.” (Friedman and Sunder, 1994, pg. 31).

12D-optimal design maximizes the determinant of the information matrix implied by maximizing the log-likelihood function.
This minimizes the confidence intervals on estimated parameters, which is similar to maximizing power.

13For an example with D-optimal design where the standard deviations depend on the treatment level, see Appendix B.
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A simulation approach is ideal for optimal experimental design, as it does not require analytical solutions

for power. Instead, power is determined by simply calculating the proportion of data-sets where the null was

rejected, as a true effect is known to exist in the simulation DGP.14 Using a QR simulation in particular

provides reasonable predictions for how treatment levels and other parameters will affect both the treatment

effect size and treatment-specific standard deviation. This means that optimal parameters can be selected

considering both the likely treatment effect size and standard deviations simultaneously and in a realistic

manner.

Note that power is not the only metric that could be used for optimal experimental design. For example,

the researcher may want to identify strategies from subject behavior in a probabilistic environment where

they may not observe their behavior in all relevant states or for enough periods. A simulation approach

would count the number of subjects that meet the criterion, a metric which could be maximized. Another

metric could be the accuracy of estimated parameters compared to their true parameter, which is known in

a simulation. This metric can guide experimental design through selecting the most effective questions to

identify certain types, as well as confirm the likely identifiability of a structural model given a set of questions

and responses.

4.3 Analysis of Closed-form Expressions for Power

The purpose of this section is to confirm that it is not always optimal to maximize the actual treatment

effect size when it comes to power, and that standard deviations need to be jointly considered. Restricting

the analysis to tests with closed-form expressions for power removes the need for simulations.

4.3.1 Binary Actions

Binary actions are common in economics experiments, particularly as it is often considered good design

to have the most simplified environment possible that still tests the conjecture. The random nature of an

individual binary decision is a Bernoulli trial with probability p, and multiple observed decisions makes up

a Binomial distribution. A common statistical test used for binary data is a test of proportions, either the

exact Binomial probability test or the large-sample approximation Z-test of proportions, either of which can

be a one-sample (i.e. point prediction) or two-sample (i.e. treatment effect) test. The standard error of

the observed proportions is determined by the sample estimate of p, and is σ =
√

p(1−p)
N . To decrease σ,

one could either increase N , or have p be close to zero or one. The two-sampled, two-sided power has a

closed form solution: Φ{ (p2−p1)−c−z1−α/2σPσD
}+ Φ{−(p2−p1)−c−z1−α/2σPσD

}, where c is a normal approximation

14A good example of using (non-QR) simulations to select experiment parameters to improve power is Rutström and Wilcox
(2009), who aimed to distinguish between two competing models of subject behavior.
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continuity correction (c = 2/n when n1 = n2 = n/2), σP =
√
p̄(1− p̄)(1/n1 + 1/n2) is the pooled standard

deviation and σD =
√
p1(1− p1)/n1 + p2(1− p2)/n2 is the standard deviation of the difference between

proportions (StataCorp, 2013). Power can be increased by increasing p2 − p1 (i.e. increase the treatment

effect), or by moving p1 or p2 closer to one or zero (i.e. decrease the standard deviation of either sample), or

increasing n1 and n2 (again, decreasing the standard deviation). In terms of choosing an optimal treatment

intensity, if possible the optimum would be to set p1 = 0 and p2 = 1, maximizing the treatment effect size

and minimizing the standard deviation. However, p1 and p2 are provided by the model, and are subject to

both theoretical and practical constraints, in that it might not be possible to choose parameters in such a way

to achieve both p1 = 0 and p2 = 1. Suppose, for whatever reason, that the maximum possible effect size is

p2− p1 = 0.25. If this were the case, power would be maximized at p = 0, q = .25 or p = 0.75, q = 1, but not

at any equivalent interior combination of the same magnitude (e.g. p = 0.25, q = 0.5). This is an example of

where it is not sufficient to only consider the treatment effect size when choosing parameters, as the standard

deviation should be considered as well. It is even the case that smaller treatment effects can be desired over

larger ones due to the standard error. One example with a large difference in treatment effect sizes would

be the selection of p1A = 0.0 and p2A = 0.3 over p1B = 0.3 and p2B = 0.7. Experiment A has a smaller

treatment effect (0.3 vs 0.4), but has slightly improved power (84.8% vs 83.2%). Another example with a

larger difference in power is p1C = 0.0 and p2C = 0.29 over p1D = 0.35 and p2D = 0.65. Experiment C has

a slightly smaller treatment effect (0.29 vs 0.3), but has substantially improved power (82.8% vs 54.4%). So

even in this relatively simple binary environment (where the standard deviation is determined by the given

p), we still must be cognizant of the fact that maximizing treatment effect size alone will not necessarily

maximize power.

4.3.2 Non-Binary Actions or Outcomes

Sometimes the parameter of interest is the average outcome that results from binary actions (e.g. election

outcomes from a group of binary voters), or that the action set is larger than 2 decisions, and therefore no

longer binary. In these cases, we use tests of the differences in means, and the most commonly used test

for this is the t-test. The functional form for power of the two-sided version of this test is: Φ{ (µ2−µ1)
σD

−

z1−α/2} + Φ{− (µ2−µ1)
σD

− z1−α/2}, where σD =
√

σ2
1

n1
+

σ2
2

n2
. This is similar to the functional form for the

z-test of proportions considered in the previous section, except now the mean of a treatment is decoupled

from the standard deviation. Increasing power could be achieved by increasing the treatment effect size,

decreasing either of the standard deviations, or increasing either of the sample sizes. However, changing

the treatment effect size in an experiment without influencing the standard deviation is unlikely. It is

possible that increasing the treatment effect size could actually decrease power, if the standard deviation also
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increases substantially, due to whatever experimental change induced the increase in the treatment effect

size. To construct an example, I hold Treatment 2 constant at µ2 = 0, and σ2 = 1, and let Treatment 1 have

µ1 ∈ [0, 1] and σ1 = f(µ1). With µ2 = 0, the treatment effect size is just the value of µ1. An example of

where maximizing µ1 does not maximize power is when f(µ1) = 2µ2
1 + µ1 + 1, where setting µ1 = 1 yields

a power of 27.8%, while power is maximized at µ1 = 0.714, with a power of 29.9%. More extreme examples

could be arbitrarily constructed, but this again illustrates that maximizing the treatment effect size alone is

not necessarily sufficient to maximize power.

4.4 Optimal Design and Replications

Replication in economics is an important but under-produced form of research, both inside and outside

experimental economics (Maniadis et al., 2014; Duvendack et al., 2017). There have been recent laudable

efforts and proposals to increase the provision of this crucial research.15 Some proposals include increasing the

benefit of independent replications by offering co-authorship (Butera et al., 2020), or including the number of

replications as a metric for an author’s research quality (Maniadis et al., 2015). Camerer et al. (2019) describe

two types of replications, direct and conceptual. A direct replication is where the same exact experiment

is conducted with as few procedural differences as feasibly possible. A conceptual replication is where the

same hypothesis as the original study is tested but using different methods or parameters. The bulk of

the encouragement in this area is with regards to direct replication, but conceptual replication is just as

important, particularly in experiments that test an explicit economic model. A conceptual rather than direct

replication provides more insight on whether the underlying model and its proposed operative channel is an

accurate description of behavior, or what extensions or caveats to the model may be required. The suggestions

to incentivize more replications tend to focus on increasing the benefits of replication, rather than lowering

the costs. I propose the use of QR based simulations to design conceptual replications that economize on

the required number of observations. The model parameters and treatment levels can be altered from the

original study to maximize power, which minimizes the required number of subjects and thus the expenditure

in terms of both time and money. I call a conceptual replication that explicitly minimizes costs an ‘efficient

replication’. A QR simulation is particularly well suited for efficient replication, as an appropriate data-set

with which to calibrate the required parameters already exists.

15For example, the establishment of the Journal of the Experimental Science Association, which aims in part to publish
under-represented experimental research like replications, and the Experimental Economics Replication Project (Camerer et al.,
2016), which conducts high-powered replication studies on multiple high-profile papers.
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5 Power Analysis Using Bayesian Persuasion as an Illustrative Ex-

ample

5.1 Bayesian Persuasion Overview

Bayesian Persuasion (Kamenica and Gentzkow, 2011) is a model of information provision with commitment

that has formed the basis for a substantial amount of research.16 Bayesian Persuasion has been applied

to a wide variety of areas, such as finance, optimal feedback, medical testing and research, insurance, and

many others too numerous to list here (Kamenica, 2019). Despite this, there have been relatively few

experimental studies of Bayesian Persuasion.17 I use a hypothetical experimental test of Bayesian Persuasion

as a motivating example to illustrate the QR approach to power analysis, as well as its potential benefits

relative to a more standard approach.

In Bayesian Persuasion, there is a Sender and a Receiver who are paired together. The Receiver has a

true unobserved state, either Red or Blue, with a common initial prior p that their state is Red. The Sender

designs an information structure that can condition on the Receiver’s true state, sending one message that

either says r or b. The Sender chooses x and y, where Pr(b|Blue) = x and Pr(r|Red) = y. The Receiver

observes x and y as well the generated message, updates his belief according to Bayes Rule, and then decides

whether to choose Red or Blue. The Receiver gets a payoff of πm if he chooses the same color as his true

state, and π0 otherwise, with πm > π0. The Sender gets a payoff of πR if the Receiver chooses Red, and πB if

the Receiver chooses Blue, with πR > πB . The Sender’s optimal strategy is to set the information structure

in such a way as to minimally update the Receiver’s beliefs such that the Receiver wants to choose Red. If

messages are straightforward (i.e. a message is seen as a suggested action), then this involves setting y = 1

and x =
1− p

p∗

1−p , where p∗ is the Buyer’s reservation threshold (in the current symmetrical setup p∗ = .5).

Suppose the hypothesis in question is whether Sender’s behavior (i.e. their choice of x) changes in response

to p. I first consider a power analysis approach of perturbing behavior about the theoretical predictions.

5.2 Normal Distribution DGP

As mentioned previously, there is not a wealth of previous experimental data to help guide a power analysis.

For this current example, consider a between-subjects treatment where p = 1
5 or p = 1

3 . The optimal x’s

given those p’s are x∗ = 3
4 and x∗ = 1

2 respectively. I assume only a one-shot interaction between the

Sender and the Receiver for this exercise. A power analysis using a standard rule of thumb would require a

treatment effect size, τ , and the level of noise in an individual’s behavior in each treatment, σ0 and σ1, to be

16Google Scholar reports more than 1400 citations.
17I am aware of the following papers: Nguyen (2017), Au and Li (2018), Fréchette et al. (2018), and Wu and Ye (2019).
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specified. For now, suppose there is no strong a-priori reason to believe that the noise should differ between

treatment, so σ0 = σ1 = σ, and I also assume no heterogeneity.18 The data-generating process (DGP) is

relatively simple: YiT = α + τT + εi, where εi ∼ N(0, σ2). If p = 1
3 is considered T = 0, then α = .5 and

τ = 1
4 follows from the theory. All that remains is to specify a σ. Typically this should be chosen based on

the most relevant previous experiments. However, given that data is not currently available, and this is just

an illustrative example, I set it to σ = 0.5.19 Given the assumed normal DGP, the Stata code to yield the

required sample size for 80% power for a t-test is: sampsi .5 .75, sd(.5) p(.8), which yields a sample

size of n = 63, so 63 Sender observations for each treatment.

Figure 2: Example Normal DGP for Bayesian Persuasion

This is also a good opportunity to show how power analysis could instead be done by generating multiple

simulated data-sets of size n from the DGP, conducting the statistical test on each data-set and counting how

many times the null is rejected, which gives a simulated measure of power. The code is provided in Appendix

A. The general idea is that each data-set is assigned an additional value/column called ‘power block’, with

which Stata can conduct the statistical test considering only the data within one power block at a time.

The simulation approach using the code in Appendix A returns a power of 79%, which is very close to

the 80% power specified in the sampsi command. The small deviation is due to the random nature of the

simulations, but this is of no practical concern.

18The impact of differential variance in this environment is presented in Appendix C. In short, more subjects should be
allocated to the noisier treatment, with the ratio of subject allocation equal to the ratio of standard deviations (List et al., 2011,
pg. 447). However, ex-ante it is not necessarily clear which treatment will have greater variance, something a QR simulation
could address.

19So chosen such that it is sufficiently noisy so that the exercise is not trivial (i.e. excessive power for low n).
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5.2.1 Optimal Experimental Design

The initial treatment priors of p = 1
3 and p = 1

5 were chosen arbitrarily, but they could instead be chosen

to maximize power, or equivalently minimize the required number of subjects to obtain a power of 80%.

A simple way to do so would be to consider the parameters that go into the rule of thumb for a t-test,

n = 12.35σ2

τ2 . To lower the required number of subjects, either the treatment effect size should be increased,

or the variance should be decreased. Absent an explicit model for variance, it is not clear how much of a

change in the initial prior would change the variance. However, theory does provide an estimate on how the

treatment effect would change, so in the absence of anything else I change τ .

Following the above, optimal experimental design calls for increasing the distance between the treatment

priors as much as possible. For example, for the alternative priors of p = 1
10 and p = 2

5 , theory predicts

Sender behavior of x∗ = 0.89(2dp) and x∗ = 0.33(2dp). Therefore, the treatment effect size is now τ = 0.56.

By the rule of thumb, the required sample size is 13 observations for each treatment. This is substantially

less than the 63 observations for each treatment when τ = 0.25.

5.3 QR Framework DGP

5.3.1 Motivation

The previous subsection reports a more standard approach for power analysis in a simple one shot experiment,

and explores optimal design through the choice of treatment levels. However, ex-ante it is not clear what

the standard deviation should be, both in general as well as by treatment. As for the treatment effect itself,

the theory should provide an estimate for an appropriate magnitude. Of course, subject behavior may not

align with the theory depending on the structure of the payoff hills, as discussed in Section 3. But in what

direction should the theoretical treatment effect be adjusted, and by how much?

To illustrate the motivation for using the QR framework, consider the expected profits of a Sender where

πR = 2 and πB = 1, given that a Receiver will choose Red if q ≥ p∗, which is presented in Figure 3. In other

words, Figure 3 represents the Sender’s payoff hill over his available actions.

Note two main features of the payoff hill in Figure 3. The first is that it is always more profitable to

choose an x that is higher than the level required to update the Receiver’s beliefs above their reservation

threshold, than it is to choose an x lower than this level. Therefore, Senders are more likely to choose an x

that is higher than the theoretical point prediction, relative to an x that is lower than the theoretical point

prediction. In other words, the payoff hills are asymmetric, slightly above the equilibrium value the slope

is quite shallow, whereas slightly below the equilibrium value it is very steep. Deviating to a slightly lower

x is very costly in terms of expected payoff, while deviating to a slightly higher x is not very costly. Such
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Figure 3: Sender’s Expected Profit for πR = 2 , πB = 1, and q∗ = 0.5

directional errors provide an adjustment to the likely treatment effect size. In this case the treatment effect

would likely differ but not excessively so, as both treatments exhibit likely deviations in the same direction,

much like the example payoff hill in Figure 1b. Secondly, note that the relative payoff peak is much higher

in the red (high-prior) treatment than in the blue (low-prior) treatment. In the blue treatment the overall

likelihood of deviating from the optimal action would be greater, as there is less relative incentive to choose

that action. Therefore, subject behavior in the blue treatment should exhibit relatively more noise and thus a

higher standard deviation than the red treatment. It is well-established that payoff hills should be considered

when designing an experiment, as discussed in Section 3. The question is, what effect will the payoff hill have

on the magnitudes on the treatment effect and treatment specific subject variance? Despite the fact that

payoff hills are considered to be a facet of good experimental design, they have currently have no bearing on

power analysis except through the researcher’s subjective guess.

5.3.2 The QR Approach

Providing some explicit but tractable structure to bring payoff hills into power analysis is the goal of a QR

simulation approach. Because the Bayesian Persuasion environment has two players, a QRE needs to be

calculated. In this environment, this is not too complicated, as the game is sequential so it can be solved

by backwards induction. For each possible belief the state is Red, q, the Receiver could hold after receiving

a signal r given x, the expected payoff of choosing Red and Blue is calculated. Then, the logit choice rule

given λ calculates the probabilities of choosing Red or Blue for each possible q. Given those Receiver decision

probabilities, the Sender’s expected profit is calculated for each possible x that could be chosen, taking into

account p and the probability of sending r or b messages. From the Sender’s expected profits, the logit choice

rule is applied to calculate the probabilities of choosing each possible x.
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The remaining step is to specify a λ. For the purposes of this example, I select λS = λR = 11.26 so

that a similar number of subjects is required to attain 80% power as the normal DGP (n = 63).20 Given

this λ, the QRE implies a DGP of Sender behavior as is graphically presented in Figure 4. Something

that should be noted is that the information provision x has increased under a QRE relative to standard

theory. This is because in the QRE, when the Receiver is indifferent he chooses either action with 50%

probability, whereas the standard theory assumes the Receiver would choose Red. Therefore, in a QRE, a

Sender optimally provides more information such that the Receiver chooses the Sender’s preferred action

with a sufficiently high probability given the trade-off implied by the signal structure. This is probably a

more realistic assumption about actual human behavior.

Figure 4: Sender’s QRE DGP when λ = 11.26

5.3.3 Optimal Experimental Design Revisited

In the previous section, more optimal treatment levels were selected from the perspective of power by in-

creasing the theoretical treatment effect size. These were treatments with priors of p = 1
10 and p = 2

5 with

predicted Sender behavior of x∗ = 0.89(2dp) and x∗ = 0.33(2dp). Using QRE simulations with λ = 11.26

and n = 63, the statistical power is only 7%, i.e. power is substantially reduced at these ‘optimal’ treatment

levels. To obtain a power of 80%, the design would require n > 4000.21 What went wrong with the previous

approach to optimal experimental design? Especially given that it coincides with the common practice of

increasing the theoretical treatment effect size. As emphasized in Section 4, it is because the likely actual

treatment effect size, as well as treatment-specific standard deviations, were not considered. Maximizing

the separation of likely behavior needs to be traded-off against the likely standard deviation. As the QRE

provides an explicit prediction for both of these parameters for any treatment level, it can be used to help

20In practice λ should be estimated from the closest experimental data available.
21The code starts to hit RAM limitations above n = 4000, which yields a power of 75%.
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revolve this trade-off. In particular, the proposed p = 1
10 treatment substantially increases noise, which is

why the statistical power decreased by so much. In a Bayesian Persuasion environment, Senders with a low

prior face a low likelihood that the Receiver’s true state coincides with the Sender’s preferred action. There-

fore, regardless of the level of information x sent, it is unlikely that the Sender will successfully persuade the

Receiver to choose Red. As a result, the Sender’s expected payoff hill is quite flat, and thus their behavior

is likely to be very noisy, increasing the standard deviation. In a QRE, a perfectly flat payoff hill implies

random uniform play. Therefore, flatter hills would move the average x closer to 0.5, which would impact the

treatment effect size. Both of these factors contribute to the substantially decreased power of these ‘optimal’

treatment levels.

I now use QRE simulations to select the optimal treatment levels, i.e. the optimal priors (p and q) for each

treatment. I assume p > q, restrict p, q ∈ [.01, 0.4], and only let p and q be integer percentages (as would be

likely in an actual experiment). I use a grid search and calculate the power for each possible combination of p

and q, and select the pair with the highest power. A 3-D surface of power over the different combinations of

p and q is shown in Figure 5. The power surface is multi-peaked, with the primary peak having a maximum

power of 97.1% at p = 0.25 and q = 0.01, and the secondary peak having a maximum power of 91.9% at

p = 0.4 and q = 0.24. The primary peak seems counter-intuitive, given the discussion about low-priors

being very noisy. However, behavior with a very flat payoff hill in a QRE environment entails near-uniform

random play, so the mean would be close to 0.5. As the t-test is a test of means, and as the mean of the

QRE distribution for p = 0.25 is x = 0.787, having a mean of 0.5 is quite powerful for detecting differences

(more-so than the mean at p = 0.4, 0.619). However, this conclusion would be erroneous unless the researcher

was explicitly testing for a subject’s indifference when the payoff hill is very flat. This is an extreme insight

from the QRE model, but the design goal is to test the Bayesian Persuasion environment. A more sensible

conclusion would arise from the restriction that the mean x in the p treatment is less than the mean x in

the q treatment (as the theory predicts if p > q), which would only yield the secondary peak, suggesting

optimal treatment priors of p = 0.4 and q = 0.24. Such a design requires only 13 Sender observations for

each treatment to reach a power of 80%, substantially less than the 63 in the original design.

An advantage of the QR approach is that it provides a structure that maps any given treatment levels

into estimates of the likely treatment effect size and standard deviations. In addition, the QR approach can

also do this for any treatment invariant parameters that affect expected utility. For example, the payoff

that a Sender gets for persuading the Receiver to choose Red, πR, or the payoff that a Receiver gets for

his guess matching his true type, πm, could also be optimally selected in a similar manner as the treatment

level. Increasing πR would steepen the Sender’s payoff hill, and similarly increasing πm would steepen the

Receiver’s payoff hill. The former has a direct effect on Sender behavior, as they are now more incentivized

18



Figure 5: Power Surface for QRE Treatment Priors

to choose their optimal action. The latter has an indirect effect on Sender behavior, as Receivers would now

more frequently guess the color with the highest belief, which the Sender would respond to. Increasing these

payoffs while holding everything else fixed is equivalent to increasing that particular type’s λ. A power curve

is presented in Figure 6 for increases in πR and πm. The resulting curve is as expected, in that increasing π

increases the statistical power, and this effect is more pronounced for the direct effect on the Sender.

The power curves suggests that πm and πR should be increased as much as possible relative to πB and π0.

There are practical constraints to this, one caveat might be that subjects need to earn a particular amount

even in the worst case scenario (so that they do not get too upset), which would cap how large π could

practically be relative to the worst-case payoff.

To summarize, a standard approach to power analysis does not explicitly consider the relative payoff hills

that subjects face. This can lead to erroneous assumptions about the direction and magnitude of subject

deviations from theory, as well as subject variability by treatment. By incorporating a QR framework into

a simulation based power analyses, we can more accurately identify likely treatment effects and standard

deviations, which can lead to more accurate ex-ante power analysis. Furthermore, we can use the QR
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Figure 6: Power Curves for π
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framework to guide design decisions, such as selection of optimal treatment levels or other fixed parameters,

in order to maximize power.

6 Ex-ante Power Analyses of Prominent Papers Using the QR

Framework

I demonstrate the application of the QR framework using a thought experiment where I place myself in

a similar position as authors of previous papers, and conduct an ex-ante power analysis. In this thought

experiment, I take one of the following three approaches. In the first approach, the data-set from the original

experiment is ignored and only data from previous related experiments are used. In the second approach a

small artificial ‘pilot’ data-set is sampled from the original experiment. In the third approach, QR parameters

are selected where subject behavior is consistent with the spirit of the model in question, which is particularly

useful in situations where a structural model proves unidentifiable. All of these situations are similar to the

ones a researcher might find themselves in. I only access data that is roughly contemporaneous or previous

to the published article and is publicly available.22 The previous experiments I will use for this exercise

come from the ones selected by the Experimental Economics Replication Project (EERP) (Camerer et al.,

2016). These are good candidates as they represent a broad range of economics experiments from high-impact

journals, and narrows the exercise to the specific ‘main’ hypotheses selected by the EERP. It should be noted

that the QR framework cannot be applied to all of these papers. In particular, there needs to be explicit theory

specified that incorporates the channel through which the treatment effect is thought to operate. However,

oftentimes small modifications or simplifying assumptions are sufficient to introduce an operative treatment

channel when none is explicitly specified. These modifications should not be considered a suggestion of the

correct way to model the channel in question, which is far beyond the scope of this exercise. Instead, they

are presented as a way to create reasonable predictions of subject behavior ex-ante in environments that

would otherwise prove intractable to a simulation approach. The point of the QR framework is to try and

improve upon what is currently standard (i.e. subjective extrapolation from previous data, or no ex-ante

power analysis at all), rather than provide exact predictions, which is an impossible task ex-ante. I conduct

ex-ante power analyses using the QR approach on seven of the papers in the EERP. I present five of the

more interesting cases in the following sections, and the remaining two in Appendices D.1 and D.2. In

addition, where applicable I provide suggestions on what parameters could be changed to increase power.

This demonstrates using QR simulations for optimal experimental design, and is also in the spirit of an

22I define ‘publicly available’ data as data made available with the journal article or on another website. It is highly likely
that authors would be willing to share other data upon request, but technically this requires data transfer agreements to be in
compliance with some Human Ethics Committees.
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efficient conceptual replication, as more optimal parameters could be selected to improve power and reduce

subject costs.

6.1 Abeler et al. (2011)

Abeler et al. (2011) use a real effort task to test a model of expectations-based reference-dependence (e.g.

Kőszegi and Rabin (2006)). In the first stage, they have subjects complete a set number of tasks where they

counted the number of zeros in a table. In the second stage, it is announced they can complete as many of

these tasks as they want at a piece rate w per task, but that this would only be paid to them 50% of the

time. Otherwise, they would be paid a fixed sum f that is independent of the number of tasks they had

completed. The treatment is to vary f , to either be 3 euros or 7 euros. According to expectations-based

reference-dependence, this should make subjects more likely to stop at the point where they have performed

enough tasks to earn f in the eventuality they are paid for their tasks. This is because earning more than f

from the tasks introduces psychologically costly losses if f eventuates, and vice-versa for earning less than f

from the tasks. A standard model of effort provision would predict no differences in f , rather subjects would

perform the task up until the point that their marginal cost of performing that task exceeds half of the piece

rate.

6.1.1 Ex-ante Power Analysis

An expectations-based reference-dependent agent in this environment faces the following piece-wise utility

function:

U(e;w, f) =


we+f

2 − c(e) + 1
2η[ 12λ(we− f)] + 1

2η[ 12 (f − we)], if we < f

we+f
2 − c(e) + 1

2η[ 12 (we− f)] + 1
2η[ 12λ(f − we)], otherwise

,

where e is the number of tasks completed, η ≥ 0 is the sensitivity to reference-dependence, λ > 1 is loss

aversion (not to be confused with λQR), and c(e) is the cost of performing e tasks.

There are two implementation issues for this environment. Firstly, the variables η and λ are not separately

identifiable, as multiple combinations of the two could explain the same decision. Secondly, this particular

environment was relatively novel at the time, and there does not appear to be a wealth of previous experi-

mental evidence with which the authors could draw upon. For example, data from a similar real-effort task

experiment might make it possible to obtain a reasonable estimate of c(e). Given these limitations, I specify

reasonable values for the parameters given the goal of testing a model of reference-dependence. For c(e) I

assume c(e; a) = ae2, which encapsulates increasing costs in a simple one-parameter model. I consider what
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a = 0.0001 a = 0.001 a = 0.01

η = 0.5
λ = 2

η = 1.5
λ = 2

η = 0.5
λ = 3

Table 2: Payoff hills for various parameters in Abeler et al. (2011)

the payoff hills will look like for some various combinations of η, λ, and a, presented in Table 2.

Table 2 highlights that it is important that the costs do not outweigh the reference-dependent and loss

averse parts of the utility function.23 If costs are too low, then subjects will want to complete as many tasks as

they can, and reference-dependence will only have a small effect. If costs are too high, then subjects will not

want to complete many tasks at all, and again, reference-dependence will have little effect. An intermediate

cost parameter can still overpower the effect of reference-dependence depending on the parameters, as the

center column of Table 2 indicates. Two of the three specifications for a = 0.001 result in the same effort

point prediction for both treatments, whereas the specification in the middle has a point prediction consistent

with reference-dependence.

All of the given combinations would predict some treatment effect in f , but given the focus on reference-

dependence, I select η = 1.5, λ = 2 and a = 0.001 (i.e. the center graph of Table 2). The parameter of

λQR remains to be specified, which is estimated from a small artificial pilot of 10 subjects per treatment.24

This estimation yields an estimate of λQRE = 0.741, which then implies τ = 10.297, σf=3 = 25.039, and

σf=7 = 22.216. These values are based on the number of tasks completed, which are paid at a piece rate of

0.20 euros. The comparison for τ from the point prediction is therefore 7−3
0.20 = 20 tasks, meaning the QR

23It is not possible to exactly control the cost of the real effort task, however, it is possible to indirectly influence it, by making
the task more or less difficult or unpleasant.

24Note, it would not possible to fit the other parameters using this pilot data-set, as η, λ, and c(e) are not separately
identifiable, especially on such a small data-set.
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fhigh = 6.60 fhigh = 7.00 fhigh = 7.40

flow = 2.60

τ = 9.930
σlow = 25.296
σhigh = 22.502
Power = 75.9%

τ = 11.088
σlow = 25.296
σhigh = 22.216
Power = 86.5%

τ = 12.268
σlow = 25.296
σhigh = 21.934
Power = 91.4%

flow = 3.00

τ = 9.139
σlow = 25.039
σhigh = 22.502
Power = 70.4%

τ = 10.297
σlow = 25.039
σhigh = 22.216
Power = 80.2%

τ = 11.478
σlow = 25.039
σhigh = 21.934
Power = 88.8%

flow = 3.40

τ = 8.293
σlow = 24.769
σhigh = 22.502
Power = 62.2%

τ = 9.451
σlow = 24.769
σhigh = 22.216
Power = 72.8%

τ = 10.632
σlow = 24.769
σhigh = 21.934
Power = 84.2%

Table 3: QR simulations for different combinations of f in Abeler et al. (2011)

predicts a treatment effect size of approximately half of that implied by the point prediction. According to

a t-test (which is equivalent to an OLS regression with treatment as a dummy variable utilized in the actual

paper), with these parameters 83 subjects per treatment are required to reach a power of 80% at the 5%

level.25

6.1.2 Optimal Experimental Design

The most obvious candidate to increase power would be to increase the distance between the f ’s in each

treatment, assuming standard deviations do not substantially rise when doing so. However, there are practical

constraints on f , for example, if f was quite high, it might induce loss-averse subjects to stay in the lab doing

the task for excessive periods of time. In addition, the values of f should be ‘clean’ to present to subjects

(e.g. f = 2.79 is not great, while f = 2.80 would be fine), and in multiples of w to align with the reference-

dependent predictions (a preference to match f = we). There may also be a design goal of keeping each

treatment’s reference-dependent prediction sufficiently different from the standard prediction (here, given w

and a, e∗ = 50). I therefore implement a restricted grid search around f ’s that were (presumably) carefully

selected by the original authors. In particular, the grid search is over combinations of flow ∈ {2.60, 3.00, 3.40}

and fhigh ∈ {6.60, 7.00, 7.40}, which is presented in Table 3.

Table 3 confirms that increasing the distance between the f ’s increases power. This is despite the fact that

decreasing flow increases the standard deviation of that treatment, as the increase in treatment effect size is

clearly offsetting this. The overall optimal configuration is flow = 2.60 and fhigh = 7.40, which would require

59 observations per treatment, less than the 83 observations required for the original treatment parameters.

25For the remainder of this section the required number of subjects refers to the number of subjects to obtain 80% power at
the 5% level unless otherwise specified.
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Figure 7: Charness and Dufwenberg (2011)’s ‘(5,7) Game’

6.2 Charness and Dufwenberg (2011)

Charness and Dufwenberg (2011) experimentally investigate the impact of communication through free-form

messages could have on behavior in a hidden information principal/agent game, as displayed in Figure 7.

Player A is the principal, and player B is the agent. The agent has a type, either low or high, which determines

their suitability for a difficult but high paying task. If a low agent attempts the difficult task, they always

fail, but if a high agent attempts the difficult task, they only fail with p = 1
6 . The agent’s type is known

to them when making their decision, and is never fully revealed to the principal if the type is low. Given

this arrangement, the principal must decide whether they want to hire the agent and let them decide what

difficulty task to undertake, or collect some outside option instead. The particular treatment effect is whether

allowing B’s to send a free-form message to their paired A discourages low B’s from choosing Roll (or in other

words, undertaking the unsuitable high difficulty task).

6.2.1 Ex-ante Power Analysis

The effect of communication is often not explicitly incorporated into theory, but Charness and Dufwenberg

(2011) suggest two possible channels, a cost of lying and guilt from blame. I incorporate a simple cost of

lying model supplemented by other-regarding preferences, as this is independent of the complications of first-

and second-order beliefs present in guilt models. Both types of players have the monetary payoffs of their
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Figure 8: Game in Charness and Dufwenberg (2006)

counterpart enter into their utility function, weighted relative to their own payoff by the parameter α. In

other words, A’s utility function is UA(xA, xB) = (1−α)xA+αxB , where xA and xB are the monetary payoffs

of players A and B respectively. I assume that when given the opportunity, B sends a message indicating that

they will choose Don’t when they are the low type, and incurs some disutility k if they do not follow through

on this, to reflect a cost of lying. I denote the two treatments as M (Messages) and NM (No Messages), with

kM > kNM = 0. So B’s utility function if they have told a lie is: UB(xA, xB) = (1− α)xB + αxA − kM , and

if they have not told a lie: UB(xA, xB) = (1− α)xB + αxA. For any given α, kM , and λ, the QRE provides

predictions for the probability of a low B choosing Roll, a high B choosing Roll, and A choosing In.

The next step is that the values of α, kM , and λ need to be specified. The best approach would be to

use a closely related study. Fortunately, the game considered in Charness and Dufwenberg (2006) (presented

in Figure 8) is a good candidate for this purpose. It has similar forms of communication, subject pools,

payoff magnitudes, and a hidden action. I assume other-regarding preferences in the same manner as before,

and that B faces the same disutility from lying, except that in this game he now promises to always Roll,

and thus faces disutility when choosing Don’t. I specify a log likelihood function that depends on the data

observed in Charness and Dufwenberg (2006) and the parameters α, kM , and λ. Using this function, I use

maximum likelihood estimation techniques to fit values of the parameters and obtain α = 0.18, kM = 2.15,

and λ = 4.41.

I apply the estimated parameters to the QRE of the current game, which provides a prediction for the

probabilities for each action in each treatment, summarized in Table 4. With these probabilities, I simulate

a data-set of size n, where n is the candidate total subjects needed.26 It should be noted that the current

26I assume that each treatment has equal sample sizes, but this assumption could be relaxed.
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Messages No Messages
Prob. A In 0.74 0.60

Prob. Low B Don’t 0.64 0.34
Prob. High B Don’t 0.21 0.21

Table 4: Probability of Actions by Treatment

experimental design calls for a direct response method, so power needs to be considered not only in terms

of the treatment effect that is likely to eventuate, but the number of subjects that will actually undertake

the relevant decision (i.e. low type B). In order for that to occur, the B’s type must be assigned as low by

nature, but it must also be the case that the type A player chooses In. Therefore, it is important that A’s

differential behavior between treatments is modeled given B’s cost of lying, despite the fact that I am not

directly testing any hypotheses on A’s behavior. Due to the direct response method, I simulate each A/B

pair sequentially as the game tree indicates, i.e. I draw B’s type, A makes their decision, and if that decision

is In, B then makes their decision given their type, which is then added to the data-set. I generate 10,000

‘power blocks’ of data-sets with n total subjects, so n/2 subjects per treatment, or n/4 pairs of A and B

per treatment. On each simulated data-set, I conduct the statistical test on low B decisions, which in this

case is a two-proportion z-test, and count how many times the null hypothesis is rejected. I then adjust n in

multiples of 4, until the lowest n that has a power of greater than 80% is obtained. This process suggests a

total number of subjects of 388, or 97 pairs of A and B per treatment.

6.2.2 Optimal Experimental Design

I now consider if there are any parameters that could be changed that would increase power. A related

question of the optimal treatment intensity is not relevant in this environment, as it is not immediately

obvious how the intensity of communication could be varied, and the impact that would have.27 I instead

turn to the other parameters that are fixed in both treatments. I consider that practical constraints exist

in the form that numbers should be easily communicable to subjects (e.g. p = 1
6 is fine, but p = .17258013

is not), and that payoffs should not move too far (e.g. increasing one payoff to $100 may increase power

substantially, but would not be affordable). The theory and motivation of the paper also indicates that some

parameters should also change together. For example, a low B choosing Roll should have the same payoffs

as a high B choosing Roll but failing, or otherwise Roll is not a hidden action.

With that in mind, I consider either raising or lowering each parameter to the nearest ‘clean number’ (i.e.

integer for payoffs, nearest tenth for probabilities). Table 5 presents the power for raising or lowering one

parameter in isolation, holding the other parameters fixed at the levels that were used in the experiment.

27Perhaps if the message is only sent with a certain probability?
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Parameter Lower Baseline Higher
Prob. low ∈ {0.6, 23 , 0.7} 78.8% 80.3% 80.5%

Out payoff ∈ {4, 5, 6} 87.6% ” 66.6%
Don’t payoff ∈ {6, 7, 8} 60.4% ” 79.9%
A fail payoff ∈ {0, 1} N/A ” 80.3%

B fail payoff ∈ {9, 10, 11} 86.1% ” 63.0%
A succeed payoff ∈ {11, 12, 13} 78.4% ” 81.8%
Prob. Succeed ∈ {0.8, 56 , 0.9} 79.4% ” 81.8%

Grid Search 0.7,4,6,0,9,13,0.9 93.7%

Table 5: Power for various parameters in Charness and Dufwenberg (2011)

Table 5 also presents the results of a grid search over every possible combination of the given parameters.

The largest increases in power come when lowering the payoff of the outside option or lowering B’s payoff in

the event that a Roll fails. Both of these factors encourage A to more frequently choose In, which increases

power as it increases the number of low B’s that actually get to make a decision.28 Changing only the most

effective parameter in isolation, the outside option, would reduce the total number of required subjects to

320 to reach a power of 80%. The grid search set of parameters would require even fewer subjects again, for

a total of 256.

6.3 Chen and Chen (2011)

Chen and Chen (2011) experimentally test the role of group identity on coordination in a two-player minimum

effort game. In particular, they induce group identity in an ‘enhanced’ treatment by not just assigning a

group, but reinforcing that identity by having the group help answer a paid question about identifying

paintings. They posit that group identity can increase the concern that others have about the payoffs of

those in their ‘in-group’. The increase in other-regarding preferences for in-group people can change the cost

threshold in which a QRE would predict low or high levels of effort in a minimum effort game.

Chen and Chen (2011) provide the following explicit utility function for a two-player minimum effort

game:

Ui(xi, xj ;αj) = aminxi, xj − c[(1− αj)xi + αjxj ],

where a is the benefit of an additional unit of minimum effort, c is the (non-refundable) cost of effort,

and αj is the relative weighting that i placed on j’s payoff, which can differ if the other is in the out-group

O, or the in-group I (αO, αI).

28This illustrates the advantage of using the strategy method, as a B decision for the case they are low would be observed for
every B, regardless of A’s decision and the random draw. However, it may be the case that using the strategy method could
change behavior relative to the direct response method (Brandts and Charness, 2000; Casari and Cason, 2009).
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Sessions Per Treatment Power
2 57%
3 65%
4 74%
5 78%
6 81%

Table 6: Ex-ante Power Analysis for Chen and Chen (2011)

6.3.1 Ex-ante Power Analysis

Chen and Chen (2011) use the a = 1, c = 0.75 environment from Goeree and Holt (2005), where subjects

can choose efforts of x ∈ [110, 170] in steps of 0.01 (i.e. they can choose from 110, 110.01, 110.02, ..., 169.98,

169.99, 170). They then calculate the QRE for different levels of α given the λ = 0.125 reported in Goeree

and Holt (2005). This is what the QRE approach would have done had it not already been conducted, as

Goeree and Holt (2005) is clearly the most closely related environment from which an estimate of λ would

be obtained from. The only thing that remains is to specify αO and αI , as the hypothesis is whether effort

levels differ substantially if the counterpart is in the same group, or in a different group. This would usually

be difficult, as there are many different ways of inducing group identities, and this would likely be sensitive

to the method used as well as the subject pool.29 Fortunately, Chen and Li (2009) conduct a near-identical

task to induce group identity on a similar subject pool. They obtain estimates of αI and αO from tasks

relating to social preferences and simple reciprocity games in the style of Charness and Rabin (2002). I take

the parameters αI = 0.474 and αO = 0.323 from the Chen and Li (2009) paper.

The statistical test used in this experiment is a panel data regression with clustering at the session level

and individual random effects. If the statistical test controls for such things, then the generated data-set

should justify the use of these controls, in order to obtain a reasonable estimate of power. To justify session

level clustering, I draw a λ ∼ U(0.1, 0.15) for each session.30 As for the individual random effect, which is

modeled as a normal draw from N(0, σe), I run a panel regression on the c = 0.75 data-set from Goeree

and Holt (2005), and obtain an estimate of σe = 15. In the simulation, in each period the subject’s action

is drawn from the session level QRE distribution, and then the individual’s random effect is applied. After

this, their effort decision is rounded to the nearest possible valid action.

This particular experimental design calls for exact session sizes of 12 subjects, and so the minimum ‘step’

for power consideration is 12, of which I will refer to as a session. Table 6 reports that 6 sessions per treatment

is required for a power of 80%. This means that 120 subjects would be required in total.

29For example, see the replication report in Camerer et al. (2016) for this paper. The same group identity task seems to have
not induced much group identity in a different subject pool, which may be because subjects did not interact as much with the
chat task.

30Although, drawing a session-level α would also be a valid approach.
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Baseline c = 0.7 c = 0.8 x ∈ [115, 165] x ∈ [105, 175] x step= 1 x step= 10
τ 6.61 5.12 7.29 4.03 9.94 6.04 4.06
σO 18.32 18.16 18.23 16.18 20.28 18.48 19.62
σI 17.74 17.56 17.97 15.90 19.22 18.04 19.66

Power at 2 57% 52% 61% 38% 76% 51% 38%
Power at 3 65% 60% 75% 37% 86% 62% 39%
Power at 4 74% 63% 75% 48% 92% 66% 49%
Power at 5 78% 70% 88% 52% 97% 72% 54%

Table 7: Ex-ante Experimental Design for Chen and Chen (2011).
τ is the empirical average treatment effect size by power block for the 5 session data-set, σO is the empirical average standard deviation of the outgroup’s

effort levels by power block for the 5 session data-set, similarly for σI but for the ingroup, and finally ‘Power at X’ is the simulated power for the X sessions

per treatment data-set.

6.3.2 Optimal Experimental Design

The first thing that should be noted is that increasing αI or decreasing αO would increase power, however, it

is not clear how specific changes in the group identity induction would change the α parameters. So, if there is

a better way to induce stronger group identity then it should be implemented, but that this is not something

the QR framework can address without some estimate of the induced α. The remaining parameters that

could vary are a and c. I focus on the cost c, as a = 1 is convenient to explain to subjects. I consider only

small changes in c, to c = 0.7 and c = 0.8, as c = 0.75 was originally chosen as it tended to result in low

effort in experiments without group identity, and the authors posited that that the introduction of group

identity might overcome this. Another design consideration is the set of permissible effort levels that can be

chosen. I consider the range of actions, in that I expand and reduce the action space by 10 effort points.

Additionally I consider making the action space coarser, by considering integer steps and steps of 10, instead

of the original step size of 0.01. In this exercise, I hold all other parameters at the same original level. The

output of this exercise is summarized in Table 7.

What Table 7 reveals is that increasing c increases power, as it decreases effort in the outgroup treatment

by more than the ingroup treatment.31 It also reveals that increasing the range of permissible actions also

increases power, which is because the higher efforts will be more likely to be played by in-group players

(and vice versa), which in the QRE can have a reinforcing effect. The increase in the treatment effect

dominates the increase in standard deviation brought about by the additional noise due to having more

available actions. Finally, increasing the coarseness of the strategy space decreases power, so this should be

avoided. Figure 9 illustrates the effect of the action space coarseness, where increasing the size of the step

causes substantially more low effort decisions for both treatments, compressing the treatment effect. Of the

possible design changes, increasing the range of actions would be the most beneficial for power. Utilizing the

31This effect would not be monotonic though. For example, increasing c ≥ 1 would result in a decreased treatment effect size,
as both treatments would tend to choose the lowest possible effort.
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Figure 9: Effect of increasing step size in the Minimum Effort Game

increased strategy space design would require only 3 sessions per treatment to attain 80% power, less than

the 6 sessions per treatment required under the original parameters.

6.4 Fehr et al. (2013)

Fehr et al. (2013) consider the effects of delegation in a principal agent game where there are a number

of projects, one of which must be selected to be implemented. There is a known ‘outside option’ project,

while the states of the all of other projects are unknown, but can be revealed through costly effort. The

principal is initially endowed with the decision right on what project to implement. If the principal retains

this decision right, the agent can provide a recommendation for which project to do, while the principal

makes his decision based on his own knowledge and/or the recommendation. If the principal delegates this

decision right, the roles are reversed, the principal can provide a recommendation but it is the agent who

makes the final decision based on the agent’s knowledge and/or the recommendation. The game starts with

the principal deciding whether to delegate or not, which is followed by simultaneous effort decisions by both

players. The effort level chosen by an individual is the probability that the true state of all projects will be

revealed to that individual. The final stage is the controlling party deciding which project to implement,

given their own information (if the true state was revealed to them), and the recommendation from the other

party. In this particular setup, there are 36 projects, 1 of which is the outside option which pays out 10 to

each subject. Of the remaining 35, 33 of the projects pay out 0 to each subject. Of the remaining 2 non-zero

projects, one of these projects is preferred by the principal, and the other is preferred by the agent (although
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Num. Groups per Treatment Power
N = 3 64.4%
N = 4 77.7%
N = 5 84.7%
N = 6 88.0%

Table 8: Fehr et al. (2013) Power Analysis

both of these projects are preferred to the known outside option). The cost of effort function is c(ei) = 25e2i ,

where ei ∈ [0, 1], and the true state is revealed to i with probability p(ei) = ei. Fehr et al. (2013) consider

a range of payoff values for projects, such that the principal is predicted to either want to delegate or not.

However, they find that delegation is substantially lower than predicted.

6.4.1 Ex-ante Power Analysis

Given the low delegation rates from the initial experiments, Fehr et al. (2013) conduct additional treatments

to test whether the low delegation rates were driven by a non-pecuniary cost of being overruled. They propose

a treatment where whichever party that is not in control cannot exert any effort, and therefore cannot provide

a recommendation that could be overruled. This is the treatment effect that the EERP considers, that the

delegation rates in this treatment are higher than in an environment with similar Nash equilibrium returns to

delegation but where there is the possibility of being overruled. Because this experiment was designed after

observing the initial results, I can place myself in the exact position of the authors, by restricting myself to

only consider their baseline set of data.

I fit a QRE to the baseline data with one modification to the model, a disutility D of being overruled. I

assume that a subject is overruled when they do not have control over the final decision, but that they have

full information (i.e. the true state is revealed to them) and they provide a recommendation which is not then

followed. This changes effort levels in equilibrium, as well as the delegation decision. Fitting this model yields

D = 41.22 and λ = 0.216. The disutility parameter is substantial, and implies that being overruled is disliked

so much as to more than wipe out even the highest pecuniary incentive. I then apply these parameters to

a QRE of the two additional treatments, and conduct a power analysis on the generated data-sets. Because

the conducted statistical test incorporates a learning trend, I increment λ linearly by period, such that the

estimated λ = 0.216 is obtained halfway into the experiment. As a higher λ is associated with less noisy

play, this is an appropriate way to model a learning effect. In addition, the statistical test clusters at the

individual level. I justify clustering at this level by having an individual specific disutility of being overruled

drawn from N(41.22, 10). The results are presented in Table 8, and suggest that 5 groups per treatment

(each group had 10 subjects in it, so a total number of 100 subjects), would be sufficient to reach 80% power.
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6.4.2 Optimal Experimental Design

The two additional treatments were carefully and explicitly designed so that the Nash equilibrium returns to

delegation were very similar. Because the two environments are procedurally different, the payoffs for different

outcomes are necessarily different between the two treatments. Changing these payoffs would mechanically

induce a difference in delegation rates quite trivially (due to the equilibrium returns to delegation), but it

would not be due to the mechanism that is proposed. This particular hypothesis is not a good application

of the QRE approach to optimal experimental design. Therefore, I do not suggest alternative parameters to

increase power for this paper.

6.5 Ifcher and Zarghamee (2011)

Ifcher and Zarghamee (2011) conduct an experiment where time preferences are elicited directly after viewing

a video clip designed to induce a positive mood. As compared to a neutral video clip, they find that subjects

exhibit more patience (i.e. discount the future less) when in the induced positive mood.

6.5.1 Ex-ante Power Analysis

The challenge in this environment is to specify an explicit functional form with which positive affect can

operate on time preferences. A brief foray into the experimental economics literature that induces positive

affect in a similar way yields some papers with other-regarding preferences and strategic environments (Capra,

2004; Kirchsteiger et al., 2006; Drouvelis and Grosskopf, 2016). I relate other-regarding preferences with time

preferences by assuming people see the present-self and the future-self as being different entities, as posited

by research in psychology (Pronin and Ross, 2006). I therefore assume that actions towards the future-self

are similar to actions towards other people in the present. In particular, I assume that subjects exhibit

quasi-hyperbolic discounting, D(y, t) = yβie
−rt if t > 0, where the present bias βi can differ depending on

what mood the subject is in.

Ifcher and Zarghamee (2011) elicit time preferences by asking for what value of $p would make a subject

indifferent between receiving $p today and receiving $m in t days time. They consider 30 combinations of m

and t, and incentivize the reporting of the indifference level of p using a discrete BDM mechanism. In this

mechanism, balls labeled b ∈ {1, 2, ...,m + 1} are placed into an urn and then a ball is drawn at random.32

If the ball drawn b is less than or equal to p, then the subject gets paid m in t days time, whereas if b > p,

the subject gets paid $b today. The discretization of the BDM mechanism means that ranges of p result in

32In the case where m+ 1 is not an integer, the final ball is the next highest integer above m.
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Subjects per Treatment Power
N = 30 74.1%
N = 31 74.5%
N = 32 77.0%
N = 33 78.2%
N = 34 80.1%
N = 35 81.8%

Table 9: Ifcher and Zarghamee (2011) Power Analysis

the same payoff outcome, so I discretize the subject’s p decisions as the mid-points of these ranges.33

A good place to obtain a reasonable estimates for βN (neutral mood), r and λ would be from Benhabib

et al. (2010), who elicit time preferences in a very similar manner, just without any mood induction. However,

this data-set is not currently publicly available, and would not give an estimate for βG (induced good mood)

anyway. Instead, I assume a small initial pilot is conducted, and fit the model to that. I simulate such a pilot

by taking 10 subjects per treatment from the full data-set. For the artificial pilot, the estimated parameters

are βG = 0.814, βN = 0.701, r = 0.002, and λ = 5.633. Finally, the statistical test that is conducted is a

regression clustered at the individual level. In order to justify individual level clustering, I assume that the

induced mood has differential effects on each subject, such that βi ∼ U [β−0.025, β+0.025]. Table 9 presents

the results of this QRE simulation power analysis. The required number of subjects per treatment to reach

80% power is 34 subjects per treatment, so 68 subjects in total.

6.5.2 Optimal Experimental Design

The obvious initial change here would be to induce a bad mood rather than a neutral one, which has

been shown to change other-regarding preferences in strategic settings (Drouvelis and Grosskopf, 2016).

I assume a similar decrease from βN to βB as the increase from βN to βG, and set βB = 0.60. This

increases power substantially, for example at N = 34 power increases from 80.1% to 100%. Such a design

change would then require only N = 8 subjects per treatment to reach a power of 80%. Another design

change could be to reduce the discretization of the BDM mechanism to provide a richer action space with

which subjects could exhibit their true preferences. I specifically consider adding additional balls such that

b ∈ {0.1, 0.2, 0.3, ...m+ 0.9,m+ 1}, substantially decreasing the coarseness of the effective strategy space in

p. However, the effect on power is small, driven by small decreases in the standard deviation due to the finer

space. The only minor improvement of power justifies the original experimental design, as it may be easier

to explain the BDM mechanism with discrete integer ball drawing.

33For the unbounded above upper range, I add the difference between the midpoint and lower-bound of the other ranges to
the lower-bound of this range.
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6.6 Summary

Table 10 presents a summary of the total number of required subjects by the ex-ante QR simulation approach

using the same parameters that were selected in the experiment, as well as if ‘optimal’ parameters in terms

of power were selected. It also presents the total number of subjects that were actually used in the original

experiments, and an ex-post approach that uses the same power analysis method as the EERP (except for

80% power). Table 10 shows that the QR simulation approach is typically more conservative than the actual

experiments. This is not necessarily surprising given that these papers are from a time when power analysis

was less common. It is not exactly clear from the listed papers how these subject numbers were determined.

The QR framework also compares somewhat favorably to the required number of subjects from an ex-post

approach, where all data are known. This is a very high bar to clear, so having the QR framework be anywhere

near those numbers is promising, and suggests the QR framework can be a reasonable way to improve ex-

ante power analysis. Finally, in some environments there exists room to increase power through changes in

the experimental design, as indicated by the lower subject numbers required when optimal parameters are

selected.

Paper
Ex-ante QR

(Original Params.)
Ex-ante QR

(Optimal Params.)
Ex-ante Original

Ex-post*
(Camerer et al., 2016)

Abeler et al. (2011) 166 118 120 237
Charness and Dufwenberg (2011) 320 256 162 192

Chen and Chen (2011) 120 72 72 125
De Clippel et al. (2014) 200 40 158 115

Fehr et al. (2013) 100 N/A 60 73
Huck et al. (2011) 60 N/A 120 114

Ifcher and Zarghamee (2011) 68 16 58 98

Table 10: Required total number of subjects
*Using the z-approximation formula for 80% power, rather than the 90% used in the EERP.

7 Conclusion and Future Research

Power analysis is an important, but until recently under-considered, factor in experimental economics re-

search. Power analysis should be the sole determinant of the number of subjects to be used in an experimental

study. However, the correct way to conduct a power analysis is only clear when enough data already exists

in the same treatments that are to be conducted, a situation a researcher only finds themselves in when

conducting a replication. Instead, the researcher looks to the most closely related previous experiments,

and must extrapolate from there what behavior might look like in the novel environments that they are
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considering. The question is how this extrapolation is done, as there is substantial room for subjectivity in

this process, which can reduce the accuracy of an ex-ante power analysis. To address this issue, I propose

the use of a QR simulation based approach to power analysis. The QR framework assumes that subjects

make proportional errors in line with the relative payoff of each action, or in other words, their payoff hill. I

demonstrate that the steepness of the payoff hill as well as potential asymmetry can influence the parameters

used in a power analysis, and that assuming normally distributed noise about theoretical point predictions

can result in under-powered studies. The QR simulation approach to power analysis uses structural tech-

niques on previous but related data-sets to calculate appropriate estimates of the QR noise parameter λ, as

well as any additional parameters that are required for the operative channel of the treatment effect to work.

With those parameters, the QR framework provides predictions for behavior in novel environments. Those

predictions can then be used to generate simulated data-sets, with which power analyses can be conducted

even in situations where a closed-form solution for power does not exist.

I demonstrate the use of the QR simulation approach using a motivating example of Bayesian Persuasion.

That particular experimental environment shows the potential failings of a more standard rule of thumb due

to asymmetric payoff hills that vary in steepness by treatment. It is not always the case that theoretical

treatment differences should be maximized when considering the objective of maximizing power. I then

use the QR framework to conduct ex-ante power analyses on various high-profile papers. From an ex-ante

perspective, QR simulations usually perform well, getting reasonably close to the objectively correct ex-post

approach. For selected papers, I provide an ex-ante suggestion for the optimal selection of parameters or

treatments that would improve power. This results in a reasonable decrease in the number of required

subjects, potentially saving both time and money. Such a process can also be conducted ex-post, when

considering replication studies. Instead of the more standard direct replication, the researcher could conduct

a conceptual replication with the goal of minimizing the cost of the replication, an ‘efficient’ replication.

Lowering the costs of replication could result in more provision of this currently under-provided research.

Future research should take the following messages from this paper. Firstly, an ex-ante power analysis

should be included to justify the number of subjects in any experimental paper, and ideally this should be

pre-registered. The profession as a whole should discuss phasing this in so that in the future a clear ex-ante

power analysis plan would be a requirement for publication. Secondly, the QR framework is applicable to a

wide variety of experimental environments, and can not only be used for power analysis in novel environments,

but it can also be used as a tool to guide experimental design both in terms of power as well as any other

conceivable metric. As for future research on this particular methodological topic, further confirmation that

this approach provides reasonable predictions from an ex-ante perspective would be helpful. In addition,

conceptual replications in the spirit of being efficient from a power perspective would be an important
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contribution to supplement more traditional direct replications.
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A Example Stata and Python Code for a Normal DGP Simulation

based Power Analysis

A.1 Stata Code

clear all

// num_sims = number of generated data-sets (the bigger the better)

scalar num_sims = 1000

// n - number of observations per treatment_vector

scalar num_obs = 63

// DGP params:

scalar intercept = .5

scalar tau = .25

// subscript 0, T=0, similarly 1, T=1

scalar std0 = .5

scalar std1 = .5

Python:

# importing packages

import numpy as np

import pandas as pd

# importing stata interface package,

# so that both stata and Python have access to variable ’num_sims’

from sfi import Scalar

# n - short for num_obs - reading in variable from stata

n = int( Scalar.getValue(’num_obs’) )

# reading in variables from stata

num_sims = int( Scalar.getValue(’num_sims’) )

intercept = float( Scalar.getValue(’intercept’) )
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tau = float( Scalar.getValue(’tau’) )

std0 = float( Scalar.getValue(’std0’) )

std1 = float( Scalar.getValue(’std1’) )

treatment_vector = np.repeat([0,1],n*num_sims)

# set seed for consistent results, comment out or change seed otherwise

np.random.seed(1)

# drawing noise terms

noise0 = np.random.normal(0,std0,n*num_sims)

noise1 = np.random.normal(0,std1,n*num_sims)

# putting the noise together in a manner consistent with treatment vector

noise_vector = np.append(noise0,noise1)

# generating the outcome according to the specified DGP

outcome_vector = intercept + tau*treatment_vector + noise_vector

# the data-set is put into ’power blocks’,

# so one data-set is where power_block==0,

# another where power_block==1, etc.

power_block_vector = np.tile(np.repeat(np.arange(num_sims),n),2)

# putting it into a format that stata will like

matrix = np.stack([treatment_vector,outcome_vector,power_block_vector],axis=-1)

df = pd.DataFrame(data=matrix, columns=["treatment", "outcome", "power_block"])

df.to_stata(’pa_sims.dta’)

end

use "pa_sims.dta"

// so we can count the number of tests rejected
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gen rejected = 0

// a is desired alpha level

local a = .05

// needed for loop

local ns = num_sims-1

forval i = 0 / ‘ns’ {

// perform the t-test

quietly ttest outcome if power_block == ‘i’, by(treatment)

// save the p_value

scalar p_val = r(p)

// record if the null was rejected

quietly replace rejected = 1 if p_val <= ‘a’ & power_block == ‘i’

}

quietly summ rejected

// the mean of the rejected variable is the power

display as text "Power: " as result r(mean)

// // results from non-simulation ttest for comparison

scalar mean1 = intercept + tau

sampsi ‘=scalar(intercept)’ ‘=scalar(mean1)’, ///

sd1(‘=scalar(std0)’) sd2(‘=scalar(std1)’) p(.8)

A.2 Discussion

Notice the lack of loops in the Python code that generates the data-sets, vectorizing these improves speed

performance substantially. In practice, one should avoid loops as often as practically possible, unless there

are memory issues, or if there are parallellization techniques (think multi-core processors) that can be easily

implemented. Unfortunately Stata offers little opportunities for vectorization, and thus must loop over each

40



power block to conduct the statistical test. This loop process is very parallelizable as the results of one

loop do not affect the others so they could be conducted simultaneously. Stata does offer easy access to

parallelization techniques through its (non-standard, costly) MP version, but does not currently support

parallelization over loops. There are also community created packages for parallel computing in Stata,

however, these are (understandably) much more difficult to implement for a regular user. One last thing to

mention is that the Python section of the code has exported the generated data-set to a Stata dta file which

Stata then reads back in, which is not strictly necessary if the package ”from sfi import Data” is utilized.

However, for more complicated examples Stata does not seem to be very stable when running Python code,

and thus it is recommended to run the Python code separately, export the data in a Stata readable file, and

then run the do file that uses that data.

It is possible to conduct this particular example in Python, and as it is vectorized it is several orders of

magnitude faster than the given Stata code. This code is provided in the section below. However, for more

complicated statistical tests, Python does not have readily available and user friendly packages for many tests

Stata can conduct (or if they do, they are not vectorizable), thus requiring the use of looping in Stata.

A.3 Python Code

import numpy as np

mean1 = .5

std1 = .5

mean2 = .75

std2 = std1

n=63

num_sims = 1000

num_reject = 0

alpha = .05

np.random.seed(1)

d1 = np.random.normal(mean1,std1,(n,num_sims))

d2 = np.random.normal(mean2,std2,(n,num_sims))
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p_vals = sps.ttest_ind(d1,d2,axis=0)[1]

rejected = np.logical_not(p_vals>=alpha)

print(’power:’,np.mean(rejected))

A.4 Python Code for QR Simulations of Bayesian Persuasion

import scipy.stats as sps

import numpy as np

# functions for bayesian persuasion:

# returns the probability that a red message would be generated

def prob_succeed(prior,x):

return prior*1.0 + (1.0-prior)*(1-x)

# can be used to calculate the optimal x to get receivers to a certain posterior

def optimal_x(prior, posterior_improvement):

# note this function takes in the prior as a percentage (e.g. 35% instead of .35)

# for backwards compatibility reasons

# if you’d like to change that, remove the ’/100’ from below

p = prior/100

q = (prior + posterior_improvement)/100

out = (p/q-p)/(1-p) - 1

return out*-1

# prob succeed but with x instead of change in prior

# prior and x are between 0 and 1 (i.e. probabilities, not percentages)

def prob_succeedX(prior,x):

return prior*1.0 + (1.0-prior)*(1-x)

# for a given x, calculates the new prior be conditional on a red message
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def update_prior(prior,x):

return prior/(prior+(1-x)*(1-prior))

# calculates the expected profit for a receiver,

# for each possible posterior, what is the expected profit of choosing red or blue, given the payoffs

# returns a 2*(len(posteriors)) matrix, first row is ep_red, second_row is ep_blue

def receiver_ep(posteriors,pay_match,pay_mismatch):

red_vec = posteriors*pay_match+(1-posteriors)*pay_mismatch

blue_vec = posteriors*pay_mismatch + (1-posteriors)*pay_match

return np.vstack((red_vec,blue_vec))

# calculates the sender’s ep for each possible x decision he is allowed to make,

# given the qre probability matrix of the reciever for each induced posterior

# (should map 1to1 to x decisions) (receiver_probs)

def sender_ep(possible_x_decisions,receiver_probs,pay_red,pay_blue,receiver_prior):

prob_red = receiver_probs[0,:]

prob_succs = prob_succeedX(receiver_prior,possible_x_decisions)

return prob_succs*(prob_red*pay_red+(1-prob_red)*pay_blue) + (1-prob_succs)*pay_blue

# given a matrix of expected profits, where each row represents a decision,

# and each column represents a state,

# will return a probability matrix with the probability of each decision given the state

# according by the logit QRE function with the parameter lamb

# (lamb=lambda, but that word is reserved in python)

# (also seems to work just fine for a vector)

def epmat2qre(ep_mat,lamb):

ep_lamb = ep_mat*lamb

mx = np.max(ep_lamb,axis=0)

exp = np.exp(ep_lamb-mx)

return exp/np.sum(exp,axis=0)

# assume senders can set x=0,.01,.02, ... , .99, 1. i.e., integer percentages

all_actions = np.array([.01*i for i in range(101)])
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# ... meaning there is a finite number of posteriors they can induce

# this function calculates the induced posterior for each x they could choose

# priors and x’s should be between 0 and 1

# possible x’s should be a list

def possible_posteriors(prior,possible_xs):

return update_prior(prior,np.array(possible_xs))

# calculates the qre equilibrium via backwards induction

# takes in the receiver’s expected payoff matrix - calculate using receiver_ep function above

def qre_equilibrium(pay_red,pay_blue,sender_lamb,receiver_lamb,receiver_prior,receiver_ep):

receiver_probs = epmat2qre(receiver_ep,receiver_lamb)

sep = sender_ep(np.array(all_actions),receiver_probs,pay_red,pay_blue,receiver_prior)

sqre = epmat2qre(sep,sender_lamb)

# weighted_x = np.sum(np.array(possible_xs)*sqre)

return sqre

# setting the bayesian persuasion parameters

pay_high = 2

pay_low = 1

prior_1 = 1/3

prior_2 = 1/5

pay_match = 2

pay_mismatch = 1

# setting the qre parameters

lambs = 11.26

lambr = lambs

# this particular function provides similar functionality to np.random.choice

# but instead takes in an entire matrix (to be applied row-wise)

# IN: choices N*M matrix, probs N*M matrix, OUT: choices N*1 vector

def choice_vec(choices,probs):
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cumprobs = probs.cumsum(axis=1)

draws = np.random.random(probs.shape[0])

oneminus = cumprobs-draws.reshape(draws.shape[0],1)

cols = np.argmax(oneminus>0,axis=1)

rows = np.arange(cumprobs.shape[0])

return choices[rows,cols]

# first calculate receiver’s expected profit

full_rep1 = receiver_ep(np.array(possible_posteriors(prior_1,all_actions)),pay_match,pay_mismatch)

full_rep2 = receiver_ep(np.array(possible_posteriors(prior_2,all_actions)),pay_match,pay_mismatch)

# now calculate sender’s noisy BR to the receiver actions

dist1 = qre_equilibrium(pay_high,pay_low,lambs,lambr,prior_1,full_rep1)

dist2 = qre_equilibrium(pay_high,pay_low,lambs,lambr,prior_2,full_rep2)

num_sims = 1000

n = 63

# set seed for consistent results

np.random.seed(1)

actions1 = choice_vec(np.tile(all_actions,(num_sims*n,1)), np.tile(dist1,(num_sims*n,1)))

np.random.seed(1000000)

actions2 = choice_vec(np.tile(all_actions,(num_sims*n,1)), np.tile(dist2,(num_sims*n,1)))

# actions are currently a vector, which is handy for stata

# however, for vectorization, putting it as a matrix

actions1 = actions1.reshape(n,num_sims)

actions2 = actions2.reshape(n,num_sims)

alpha = .05

# conducting the t-tests and counting the number of rejections

p_vals = sps.ttest_ind(actions1,actions2,axis=0)[1]
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rejected = np.logical_not(p_vals>=alpha)

print(’power:’,np.mean(rejected))

B D-optimal Example With Treatment-specific Standard Devia-

tion

Consider the following (extreme) illustrative example. Assume an artificial DGP of the form y = b + cxi +

(xi + 1)2.5εi, εi ∼ N(0, σ2), and where the possible treatment levels are xi ∈ [0, 1]. From the DGP it can

be seen that a higher xi results in noisier data. To ease notation, consider a case where 2 subjects will be

assigned to each treatment (the general pattern holds for any distribution of n over treatments), and denote

the two treatment intensities to be chosen as w and x, with x > w. The Log Likelihood would be as follows:

LL(x,w) = 4k − 2
(w+1)5.0

(−b− cw + y)
2 − 2

(x+1)5.0
(−b− cx+ y)

2

Differentiating with respect to b and c (the parameters we seek to accurately estimate) and forming the

information matrix yields:

det(I) = −
(
− 4w

(w+1)5.0
− 4x

(x+1)5.0

)2
+
(
− 4w2

(w+1)5.0
− 4x2

(x+1)5.0

)(
− 4

(w+1)5.0
− 4

(x+1)5.0

)
Utilizing a grid search where w, x ∈ [1e − 10, 1], the determinant is maximized where w = 1e − 10 and

x = 0.668. The smallest possible value is selected for w, as this is where noise is minimized. As for x there

exists a trade-off, increasing it increases separation between the treatments, but also increases the noise of

the observations in the x treatment, meaning it is not optimal to increase x all the way to 1.

C Differential Treatment Variance in Bayesian Persuasion

This section explores the impact of each treatment having different subject variability in the Bayesian Persua-

sion environment specified in Section 5. If the standard deviation differs substantially between treatments,

then for optimal power more subjects should be allocated to the more noisy treatment, in proportion with

the relative variances (List et al., 2011). Table 11 presents the required sample size to hit a power of 80%

for a selection of larger and smaller variances across each treatment. As evident in Table 11, a higher vari-

ance requires more subjects, and assigning subjects efficiently by allowing the sample size to differ across

treatments results in a lower total number of required observations. There are two questions that would

need to be answered ex-ante in order to allocate different numbers of subjects to each treatment. Firstly,

what treatment would have more variation in subject behavior? Secondly, what would be the ratio of the

treatment standard deviations? Ex-post this should be less of an issue, as there should be reasonably reliable
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estimates of the variation in subject behavior by treatment, but this insight would only really be of use to

replication studies. Ex-ante, the QR framework can provide estimates of the anticipated standard deviation

of each treatment. If the estimated standard deviations differ substantially, then consideration of non-equal

subject allocations may be prudent.

σ1 = .25 σ1 = .5 σ1 = .75

σ0 = .25 16,16
40,40
24,48

79,79
32,96

σ0 = .5
40,40
48,24

63,63
103,103
79,119

σ0 = .75
79,79
96,32

103,103
119,79

142,142

Table 11: Effects of Unequal Variance

D Ex-ante Power Analysis of Omitted Papers

D.1 De Clippel et al. (2014)

De Clippel et al. (2014) experimentally analyze two rules for the selection of different outcomes (motivated in

the paper as arbitrators), the short-list (SL) and veto-rank (VR) methods. In the SL method, one player is

randomly selected to create a list of n < N (here n = 3, N = 5) options, of which the other player chooses the

final outcome from. In the VR method, both players remove m < N options from contention (here m = 2),

and then rank the remaining options. The selected option is the option with the lowest sum of ranks that

has not been removed/vetoed.

D.1.1 Ex-ante Power Analysis

The particular treatment effect is that the SL method induces higher average payoffs than the VR method

for the preference orderings [a,b,c,d,e] and [b,a,c,d,e] for players 1 and 2 respectively (denoted Pf2 in the

paper). Unfortunately, this experiment was relatively novel, and there does not appear to be any closely

related experiments from which to obtain estimates of λ. For the purposes of this exercise, I will consider

the data from the other three preference orderings that were also reported in De Clippel et al. (2014), but

that are not involved with the given hypothesis. This generates a ‘past experiment’ of sorts, and somewhat

resembles the problem an experimenter might face.

I fit the QRE λ separately on the VR and SL environments, as despite their similarities as both being

methods to determine an outcome for the group, the strategic environments differ substantially. The SL

environment is sequential, with the second mover only needing to choose which of the 3 options to take,
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and the first mover only needing to choose out of 10 possible short-lists. Whereas the VR environment

is simultaneous, with each player needing to choose from 60 possible veto rank combinations. The VR

environment has multiple Nash equilibria, so I consider only the logit path in this game.34 Fitting the QRE

model to all of the preference orderings except for the one of interest yields λV R = 10.00 and λSL = 2.49.

For the preference ordering of interest, 500 total observations per treatment are required for a power of 80%.

This is obtained by having 50 pairs of subjects observed over the 10 rounds in the experiment (so 200 subjects

in total).35

D.1.2 Optimal Experimental Design

There are a few different factors that could be varied here, such as the number of options, the size of the

short-list, the number of vetos, the payoff for each action, and the preference orderings. I focus on the latter

only, as fitting a QRE to the VR condition takes a substantial amount of computing time due to the logit path

restriction, making considering all possible dimensions intractable. I consider 10 randomly sampled preference

orderings that were not considered in the original experiment. Like the original environment, I hold player

1’s preference ordering to be [a, b, c, d, e], while player 2’s preference ordering changes. For comparison, I also

include the four original preference orderings, denoted Pf1− 4, and denote the newly considered preference

orders as PfX1 − 10. The resulting analysis is presented in Table 12, which reveals a clear separation

between low to moderately powered preference orderings, and very high powered preference orderings with

a simulation power at or near 100%. I focus on the high powered preference sets, and seek to differentiate

between them by setting N = 50, α = 0.01, and by considering a closed form solution of power that is not

subject to random noise. This is presented in Table 13, and yields a ‘winner’ of PfX10 − [d, a, e, c, b]. It

should be noted that here is another example of not just maximizing the treatment effect size. PfX10 gains

its edge over PfX7 despite having a lower τ , due to the decrease in standard deviation in the SL treatment.

Using PfX10 instead of Pf2 would result in a required number of observations of N = 22 per treatment,

which I round up to the minimum of one session for each treatment with a session size of 20, so N = 100

observations per treatment, or 40 subjects in total.

34The logit path is the unique path along λ that connects the uniform random play when λ = 0 to one particular Nash
equilibrium when λ→∞. The Nash equilibrium that is converged to is called the logit solution, and is a refinement of the Nash
equilibrium.

35It should be noted that as there is random re-matching within the session, then the t-test really should be conducted on
the average at the session level. However, I report this approach as this is how the statistical test was conducted in the original
paper.
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Player 2 Preference Ordering
µSL,µV R

τ
σSL, σV R

Power with α = .05

Pf1 - [e, d, c, b, a]
1.0,1.0

0.0
0.0,0.0

0.0%

Pf2 - [b, a, c, d, e]
1.46,1.54

0.08
0.51,0.41

0.582%

Pf3 - [c, b, a, d, e]
1.33,1.37

0.04
0.43,0.34

29.6%

Pf4 - [e, c, a, b, d]
1.16,1.29

0.13
0.32,0.31

99.8%

PfX1 - [e, b, a, c, d]
1.23,1.34

0.11
0.38,0.32

96.4%

PfX2 - [e, d, c, a, b]
1.02,1.03

0.01
0.11,0.11

20.1%

PfX3 - [b, c, d, e, a]
1.34,1.59

0.25
0.48,0.31

100%

PfX4 - [d, c, e, b, a]
1.09,1.17

0.08
0.27,0.17

99.9%

PfX5 - [c, e, b, a, d]
1.2,1.22

0.02
0.36,0.28

11.6%

PfX6 - [a, c, b, d, e]
1.53,1.86

0.33
0.57,0.31

100%

PfX7 - [a, d, e, b, c]
1.49,1.87

0.38
0.61,0.31

100%

PfX8 - [c, b, a, e, d]
1.32,1.41

0.09
0.44,0.29

81.3%

PfX9 - [b, e, c, a, d]
1.32,1.58

0.25
0.48,0.32

100%

PfX10 - [d, a, e, c, b]
1.26,1.6

0.34
0.47,0.3

100%

Table 12: De Clippel et al. (2014) - Power of Preference Orderings at N = 300
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Player 2 Preference Ordering
µSL,µV R

τ
σSL, σV R

Power with α = .01

Pf4 - [e, c, a, b, d]
1.13,1.29

0.15
0.34,0.31

42.4%

PfX1 - [e, b, a, c ,d]
1.23,1.34

0.11
0.38,0.32

15.9%

PfX3 - [b, c, d, e, a]
1.33,1.59

0.25
0.48,0.31

71.0%

PfX4 - [d, c, e, b, a]
1.09,1.17

0.09
0.27,0.17

25.8%

PfX6 - [a, c, b, d, e]
1.53,1.86

0.33
0.57,0.31

86.2%

PfX7 - [a, d, e, b, c]
1.49,1.87

0.38
0.61,0.3

91.2%

PfX9 - [b, e, c, a, d]
1.32,1.58

0.25
0.47,0.32

70.2%

PfX10 - [d, a, e, c, b]
1.27,1.6

0.34
0.47,0.29

95.5%

Table 13: De Clippel et al. (2014) - Power of Selected Preference Orderings at N = 50
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D.2 Huck et al. (2011)

Huck et al. (2011) consider an experimental test of the Lazear model of deferred compensation (Lazear, 1979).

In their experiment, the firm initially sets the wage profile W1, W2, and W3, which is the worker’s wage in

periods t = 1, t = 2, and t = 3 respectively. Whether the firm can commit to this wage profile is the treatment

of interest. The worker makes effort decisions at t = 1.5 and t = 2.5, and can choose Et ∈ {L,M,H}. If the

worker chooses L, he is fired with probability p, and does not receive the wages that would follow (i.e. either

W2 and W3 if fired at t = 1.5, and W3 if fired at t = 2.5). Both the firm’s payoff and the worker’s cost is

increasing in the chosen effort level. If the worker is fired at t = 1.5, then the firm receives the benefit of L

effort at t = 2.5, at no cost to either worker or firm. The particular parameters chosen for the experiment

were p = 0.5, costs of effort CL = 0, CM = 20, CH = 40, firm revenues ZL = 50, ZM = 100, ZH = 140,

and wage offers could be Wt ∈ {0, 1, 2, ..., 119, 120}. The equilibrium is solved via backwards induction, and

under commitment the firm’s equilibrium behavior is to set a deferred compensation contract of W1 = 0,

W2 ∈ [0, 20] and W3 = 60 −W2, which induces the worker to choose M at both effort decisions. Without

commitment, the equilibrium is that the firm offers no wages and the worker always chooses L effort. The

hypothesis in question is whether the deferred compensation portion of the wage profile W2 + W3 differs

between the commitment and no commitment cases.

D.2.1 Ex-ante Power Analysis

It is relatively straightforward to fit a QRE to either of these sequential environments, so all that remains

is to specify a reasonable λ. However, unfortunately there does not appear to be any tangentially related

experimental environments with which to obtain this from. Instead, for the purposes of this exercise, I

conduct a thought experiment where I only observe data from one of the treatments, and then use that to

fit the λ. This is another way to try and make an analogous situation to what an experimenter might face,

using a previous experimental setup as a baseline, and proposing to test a new environment. I run this

exercise both ways, i.e. I assume I only have the commitment data to fit a λ to then generate predictions

for the no commitment experiment, and vice versa. From either approach I obtain similar estimates of λ,

λFCT = 0.0414 and λNCT = 0.0552. This yields predictions as presented in Table 14. The QRE simulation

has performed quite well in terms of the treatment effect size, but less so in terms of point predictions. It has

predicted the differential standard deviation well, but not so much from the FCT treatment. The statistical

test that was conducted was a Mann-Whitney test on the average deferred wages by session, which consisted

of groups of 10 (5 firms and 5 workers), who interacted over 20 rounds. The averaging by session reduces

the noise substantially, and I find that in conjunction with to the large treatment effect size, the test is very
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Treatment λ µNCT σNCT µFCT σFCT τ Sessions per Treatment
FCT 0.0414 45.75 2.93 73.29 3.66 27.54 3
NCT 0.0552 34.95 2.34 68.63 3.20 33.68 3

Actual 0.0480* 21.31 3.65 54.74 12.61 33.43 6**

Table 14: Huck et al. (2011)
*QRE fit on both data-sets. **Number of sessions used in Huck et al. (2011).

strongly powered even for only a small number of independent observations.

D.2.2 Optimal Experimental Design

As the test is already strongly powered even for very low number of observations, via simulation there are

issues with ‘perfectly powered’ tests with a power of 100%. It is not possible to improve from a perfectly

powered test, therefore I cannot investigate changes in power due to changes in the experimental design.

Furthermore, as the statistical test is so strongly powered, it is of little practical importance to improve

power. Therefore, for this particular paper, I do not conduct any thought exercise with regards to changes

in the experimental design.
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